s
Crédito: Charles Deluvio/Unsplash
INTELIGÊNCIA ARTIFICIAL

Marketing: adeus focus groups, hello machine learning

Em tempos de economia Low Touch, um estudo aponta que o uso de algoritmos de machine learning na análise de reviews em sites de e-commerce pode ajudar as equipes de marketing

Focus groups são uma das práticas de marketing que vão ter que se reinventar nessa nova economia Low Touch. Como encontrar boas ideias, rapidamente, para criar produtos que atendam de forma inovadora as necessidades dos consumidores? Ou, melhor, como saber o que querem os consumidores sem juntar um grupo deles em uma sala fechada?

Uma das respostas pode estar na mineração de dados online em lugares diferentes, e um estudo liderado pelo russo Artem Timoshenko, professor assistente de marketing na Kellogg School of Management, da Northwestern University, aponta um caminho: analisar, com ajuda de algoritmos de machine learning, os reviews e comentários nos sites de e-commerce.

O estudo foi conduzido por Timoshenko e pelo pesquisador John Hauser, da MIT Sloan School of Management, em parceria com a consultoria Applied Marketing Science, Inc. (AMS), com mais de vinte anos de experiência em pesquisa de mercado. O tema da prova de conceito foi escovas de dentes. A AMS tinha um estudo recente com focus groups tradicionais sobre o produto e se animou a entrar no projeto para validar a hipótese.

CADASTRE-SE GRÁTIS PARA ACESSAR 5 CONTEÚDOS MENSAIS

Já recebe a newsletter? Ative seu acesso

Ao cadastrar-se você declara que está de acordo
com nossos Termos de Uso e Privacidade.

Cadastrar

Os pesquisadores reuniram reviews sobre escovas de dentes publicados na Amazon, somando um relatório de mais de 12 mil palavras, e usaram um algoritmo de machine learning que “limpou” comentários que não teriam qualquer peso na inovação de produto (tipo: “meu filho ama essa escova“). Esse relatório foi então analisado pelos especialistas da AMS usando as mesmas técnicas de review de focus groups.

O resultado é animador: os insights de inovação usando os reviews online foram 97% compatíveis com as 86 ideias identificadas nos focus groups humanos, mas com a vantagem de apresentar 8 novas ideias, um desempenho 10% melhor que o das técnicas tradicionais. Timoshenko publicou o estudo em uma base de conteúdos científicos e o código do algoritmo foi liberado gratuitamente para empresas.

Engenharia e P&D sob pressão: custos sobem, decisões atrasam

Inteligência Artificial

Engenharia e P&D sob pressão: custos sobem, decisões atrasam

Relatório global da Capgemini mostra por que tecnologia não é mais o gargalo — e como a lentidão organizacional ameaça a competitividade.

A IA já funciona. Mas tem um problema estrutural

Inteligência Artificial

A IA já funciona. Mas tem um problema estrutural

A tecnologia amadureceu. Porém, organizações, processos e governança não acompanharam a velocidade da IA em escala.

Um tutor digital para cada pessoa

Inteligência Artificial

Um tutor digital para cada pessoa

A equação "IA + supervisão humana" redefine aprendizagem, reduz desigualdades e cria novo padrão de qualificação. A IA vira infraestrutura cognitiva, reconfigurando talento, ensino e competitividade.

Modelos demais, valor de menos

Inteligência Artificial

Modelos demais, valor de menos

Em 2026, o maior risco de IA pode ser o excesso de modelos e a ausência de integração. O contexto se perde. E o ROI também.

A monetização via anúncios chegou às buscas de IA

Inteligência Artificial

A monetização via anúncios chegou às buscas de IA

O desafio agora é manter neutralidade e valor estratégico em um ambiente que tende à manipulação invisível.

Cinco tendências que vão definir a experiência do cliente em 2026

Tendências

Cinco tendências que vão definir a experiência do cliente em 2026

IA com memória, autoatendimento imediato, atendimento multimodal, análises por prompt e transparência algorítmica formam a nova base do CX, segundo o CX Trends 2026 da Zendesk