Data Science é um termo que escapa a qualquer definição única e completa, o que o torna difícil de usar, especialmente se o objetivo é usá-lo corretamente. A maioria dos artigos e publicações usa o termo livremente, partindo do pressuposto de que é universalmente entendido. No entanto, a ciência de dados – seus métodos, objetivos e aplicações – evolui com o tempo e a tecnologia.
Reconhecendo a necessidade de uma explicação clara da Ciência de Dados, a equipe do 365 Data Science projetou o infográfico What-Where-Who, no qual define os processos-chave deste campo do conhecimento.
De humanoides a veículos autônomos, a robótica entra em fase de maturação com dados sintéticos, teleoperação e modelos generativos que aprendem a agir no mundo real.
Enquanto o Vale do Silício corre para criar máquinas que superem a mente humana, a Microsoft aposta em outro tipo de corrida: a por uma superinteligência poderosa, mas sob controle humano.
IA Soberana sai dos gabinetes de governo e entra no coração da estratégia corporativa, redefinindo quem controla dados, energia e vantagem competitiva.
Simulações baseadas em agentes autônomos estão acelerando decisões de negócios — e já superam pesquisas tradicionais em precisão e tempo. Mas há desafios para o uso em escala.
Empresas que tratam rotulagem como capex cognitivo, e não custo operacional, estão melhor preparadas para transformar aprendizado em ROI.
O pico de expectativas sobre vibe coding está cedendo lugar a um uso mais controlado. Em protótipos e automações locais, funciona. Em produção, sem governança, vira dívida técnica e risco.
Aproveite nossas promoções de renovação
Clique aquiPara continuar navegando como visitante, vá por aqui.
Cadastre-se grátis, leia até 5 conteúdos por mês,
e receba nossa newsletter diária.
Já recebe a newsletter? Ative seu acesso
