Data Science é um termo que escapa a qualquer definição única e completa, o que o torna difícil de usar, especialmente se o objetivo é usá-lo corretamente. A maioria dos artigos e publicações usa o termo livremente, partindo do pressuposto de que é universalmente entendido. No entanto, a ciência de dados – seus métodos, objetivos e aplicações – evolui com o tempo e a tecnologia.
Reconhecendo a necessidade de uma explicação clara da Ciência de Dados, a equipe do 365 Data Science projetou o infográfico What-Where-Who, no qual define os processos-chave deste campo do conhecimento.
A tecnologia amadureceu, mas organizações, processos e governança não acompanharam a velocidade da IA em escala.
A equação "IA + supervisão humana" redefine aprendizagem, reduz desigualdades e cria novo padrão de qualificação. A IA vira infraestrutura cognitiva, reconfigurando talento, ensino e competitividade.
Em 2026, o maior risco de IA pode ser o excesso de modelos e a ausência de integração. O contexto se perde. E o ROI também.
O desafio agora é manter neutralidade e valor estratégico em um ambiente que tende à manipulação invisível.
Relatórios da IBM e da Deloitte apontam na mesma direção: empresas só extraem valor de IA quando CDOs garantem governança, integração e métricas consistentes para os dados.
Relatório da EY revela como IA agêntica, contratos inteligentes, robótica e neurotecnologias estão transformando empresas em ecossistemas autônomos e superfluídos
Aproveite nossas promoções de renovação
Clique aquiPara continuar navegando como visitante, vá por aqui.
Cadastre-se grátis, leia até 5 conteúdos por mês,
e receba nossa newsletter diária.
Já recebe a newsletter? Ative seu acesso
