s
INTELIGÊNCIA ARTIFICIAL

IA Neuro-Simbólica: chegamos à terceira onda da Inteligência Artificial

A promessa é a de transcender os limites do Deep Learning e da IA Simbólica, aprendendo com conjuntos de dados de treinamento bem menores, tornando a aquisição de dados muito mais fácil

É hora de reinventar a inteligência artificial.  E, para muitos cientistas de dados, o caminho para isso é investir na IA Neuro-Simbólica. Que, em linhas gerais, visa aumentar (e reter) os pontos fortes da IA ​​estatística (do Machine e do Deep Learning) com as capacidades complementares da IA ​​simbólica ou clássica (conhecimento e raciocínio).

O Deep Learning, assim como a IA Simbólica, são os pilares da tecnologia de Ciência de Dados, mas a IA Neuro-Simbólica promete transcender algumas de suas limitações. Simplesmente porque pode:

  1. Resolver problemas muito mais difíceis;
  2. Aprender com menos dados, e para um grande número de tarefas, em vez de uma tarefa restrita;
  3. Fornecer decisões e ações intrinsecamente compreensíveis e controláveis.

Em outras palavras, a IA Neuro-Simbólica pode tornar a IA verdadeiramente inteligente. Além disso, espera-se que  ajude a reduzir o  preconceito da máquina, tornando o processo de tomada de decisão um modelo de aprendizagem  mais transparente  e  explicável. Isso porque oferece:

  • Eficiência de dados - um sistema Neuro Symbolic AI médio pode ser treinado com apenas um por cento da quantidade de dados que, de outra forma, seria necessária para os métodos tradicionais de aprendizado de máquina. Isso evita que os cientistas de dados tenham que coletar grandes volumes de dados precisos e também economiza o tempo e o esforço necessários para organizar e rotular os pontos de dados individuais.
  • Alta precisão - as redes neurais e a IA simbólica têm alto grau de precisão. No entanto, as porcentagens não são altas o suficiente para serem usadas em cenários de alto risco que exigem respostas precisas e rápidas (como carros autônomos). Por exemplo, a precisão das redes neurais está em torno de 80%. No Neuro Symbolic AI, as redes neurais e o AI simbólico se sobrepõem para preencher todas as lacunas de precisão e produzir resultados mais confiáveis.
  • Transparência de dados - Os sistemas de IA de autoaprendizagem tomam decisões usando um algoritmo subjacente que eles próprios projetaram, deixando aqueles que criaram o sistema sem saber a metodologia que o programa usou para chegar à sua conclusão. Já a Neuro Symbolic AI elimina esse problema ao oferecer total transparência, mostrando a seus usuários como chegou ao resultado final.

Este é um conteúdo exclusivo para assinantes.

Cadastre-se grátis para ler agora
e acesse 5 conteúdos por mês.

É assinante ou já tem senha? Faça login. Já recebe a newsletter? Ative seu acesso.

A tecnologia acelerou, mas a base científica e humana está encolhendo

Inovação

A tecnologia acelerou, mas a base científica e humana está encolhend...

Enquanto IA, quântica e biotecnologia avançam, Stanford alerta para a erosão da ciência básica e do capital humano

SaaS, agentes e a nova economia do software

Inteligência Artificial

SaaS, agentes e a nova economia do software

A automação por IA está deslocando valor da interface para dados, controle e orquestração.

Mais cobrança por resultados, menos preparo: a equação de risco das empresas em 2026

Tendências

Mais cobrança por resultados, menos preparo: a equação de risco das...

Estudos do GPTW, da Gartner e da Harvard Business Review indicam que exigir performance sem recalibrar suporte, cultura e capacitação cobra um preço alto

A crise silenciosa do trabalho: por que as empresas estão perdendo foco, não horas

Tendências

A crise silenciosa do trabalho: por que as empresas estão perdendo fo...

Dados globais indicam que apenas 2 a 3 horas do dia são realmente produtivas, enquanto o “trabalho sobre trabalho” e a fragmentação da agenda corroem a eficiência

IA Agêntica depende mais de gente que de código

Inteligência Artificial

IA Agêntica depende mais de gente que de código

Agentes prometem escala e eficiência, mas expõem limites organizacionais. O diferencial está na capacidade das empresas de gerir IA como rotina operacional.

Quem define as regras quando agentes se coordenam?

Inteligência Artificial

Quem define as regras quando agentes se coordenam?

O que o experimento MoltBook revela sobre o valor econômico, a governança e a liderança em sistemas autônomos.