Data Science é um termo que escapa a qualquer definição única e completa, o que o torna difícil de usar, especialmente se o objetivo é usá-lo corretamente. A maioria dos artigos e publicações usa o termo livremente, partindo do pressuposto de que é universalmente entendido. No entanto, a ciência de dados – seus métodos, objetivos e aplicações – evolui com o tempo e a tecnologia.
Reconhecendo a necessidade de uma explicação clara da Ciência de Dados, a equipe do 365 Data Science projetou o infográfico What-Where-Who, no qual define os processos-chave deste campo do conhecimento.
Porque a Inteligência Artificial deixou de ser tecnologia. Tornou-se infraestrutura — e, portanto, política econômica.
A IA está mudando o mercado de software. Empresas nativas de IA crescem até três vezes mais rápido que as de SaaS tradicional, com um diferencial: retorno rápido de valor para o cliente.
Muitas organizações têm dificuldade em transformar a IA Agêntica em ROI. Desafios estruturais como governança, déficit técnico, custo e confiança ainda limitam o impacto desejado
Pesquisas recentes mostram que chatbots e copilots podem capturar atenção como redes sociais e máquinas caça-níqueis. E já há um preço alto sendo pago nas empresas.
Tratando segurança como arquitetura e não como filtro no fim do funil. Aplicações que nascem com detecção, supervisão e resposta em camadas independentes escalam com menos sustos.
Pesquisa mostra que 85% dos trabalhadores acham que a IA vai impactar seus empregos. O Brasil é o mais otimista da América Latina, mas também sente medo de ser substituído
Aproveite nossas promoções de renovação
Clique aquiPara continuar navegando como visitante, vá por aqui.
Cadastre-se grátis, leia até 5 conteúdos por mês,
e receba nossa newsletter diária.
Já recebe a newsletter? Ative seu acesso