s
INTELIGÊNCIA ARTIFICIAL

Pequenos Modelos de Linguagem: Por que menor às vezes é melhor

A nova tendência para o mercado de inteligência artificial são os Pequenos Modelos de Linguagem, que cativou empresas como Hugging Face, Mistral AI, Nvidia e OpenAI, entre outros.

Esta semana marca mais uma tendência em IA com o surgimento de pequenos modelos de linguagem da Hugging Face, Mistral AI, Nvidia e OpenAI, entre outros. Essas e outras empresas estão voltando sua atenção para modelos menos potentes, esperando que custos mais baixos e desempenho sólido conquistem mais clientes.

Devemos esperar ver modelos 100 vezes menores e mais baratos nos próximos um a dois anos. "Em cinco, eles se tornarão mais eficientes, os LLMs continuarão a se tornar mais baratos de treinar e a inferência de LLM se tornará generalizada”, profetizou Bindu Reddy, a CEO da Abacus.AI.

Na prática, começa a ficar muito claro que, para muitas tarefas, como resumir documentos ou gerar imagens, modelos grandes podem ser um exagero. Como consequência, os consumidores têm buscado maneiras de executar tecnologia generativa baseada em IA de forma mais barata, principalmente nessa fase em que os retornos do investimento em IA Generativa ainda não são claros. Como os Small Language Models (SLMs) usam menos poder de computação, eles podem responder perguntas por apenas um sexto do custo de modelos de linguagem grandes em muitos casos, calcula Yoav Shoham, cofundador da AI21 Labs.

Este é um conteúdo exclusivo para assinantes.

Cadastre-se grátis para ler agora
e acesse 5 conteúdos por mês.

É assinante ou já tem senha? Faça login. Já recebe a newsletter? Ative seu acesso.

Um tutor digital para cada pessoa.

Inteligência Artificial

Um tutor digital para cada pessoa.

A equação "IA + supervisão humana" redefine aprendizagem, reduz desigualdades e cria novo padrão de qualificação. A IA vira infraestrutura cognitiva, reconfigurando talento, ensino e competitividade.

Modelos demais, valor de menos

Inteligência Artificial

Modelos demais, valor de menos

Em 2026, o maior risco de IA pode ser o excesso de modelos e a ausência de integração. O contexto se perde. E o ROI também.

A monetização via anúncios chegou às buscas de IA

Inteligência Artificial

A monetização via anúncios chegou às buscas de IA

O desafio agora é manter neutralidade e valor estratégico em um ambiente que tende à manipulação invisível.

Martech 2026 provoca CEOs e boards

Inteligência Artificial

Martech 2026 provoca CEOs e boards

Ano que vem, os agentes assumirão a jornada de Marketing. Os Agents of Customers já começam a mudar CAC, margem e previsibilidade. Ignorá-los custará caro.

A corrida da IA é vencida (ou perdida) na camada de dados

Inteligência Artificial

A corrida da IA é vencida (ou perdida) na camada de dados

Relatórios da IBM e da Deloitte apontam na mesma direção: empresas só extraem valor de IA quando CDOs garantem governança, integração e métricas consistentes para os dados.

O fim da fricção: a ascensão das empresas superfluidas e o futuro híbrido entre humanos e IA

Inteligência Artificial

O fim da fricção: a ascensão das empresas superfluidas e o futuro h...

Relatório da EY revela como IA agêntica, contratos inteligentes, robótica e neurotecnologias estão transformando empresas em ecossistemas autônomos e superfluídos