s
INTELIGÊNCIA ARTIFICIAL

O futuro dos Transformers na IA e sua evolução

Estudos mostram que memória de longo prazo para Transformers permite lidar com contextos mais longos

Dois artigos de pesquisa recém-publicados podem significar muito para a arquitetura central dos Transformers, de modo a garantir a eles uma memória de longo prazo, torná-los melhores em lidar com contextos mais longos e se tornarem mais eficientes. Você confiaria mais na IA se os LLMs se lembrassem de conversas anteriores, aprendessem com elas e citassem as fontes? Pois é.

A proposta de pesquisadores da Sakana AI e do Institute of Science Tokyo é o Transformer², um framework de autoadaptação projetado para melhorar o desempenho dos LLMs, abrindo caminho para sistemas de IA dinâmicos e auto-organizados. Diferentemente dos sistemas de IA tradicionais que são pré-treinados para tarefas específicas, o Transformer² ajusta dinamicamente suas configurações internas para lidar com diversos desafios, que vão desde

  • Matemática: resolver problemas complexos com precisão.
  • Codificação: auxiliar desenvolvedores com geração e depuração de código.
  • Raciocínio: enfrentar desafios lógicos com proficiência semelhante à humana.
  • Compreensão visual: analisar imagens e padrões complexos de forma efetiva.

Modelos autoadaptativos visam solucionar os desafios apresentados pelos métodos tradicionais de ajuste fino, que geralmente são computacionalmente intensivos e estáticos em sua capacidade de lidar com diversas tarefas. Para desenvolver o Transformers², a equipe de IA da Sakana se inspirou em como o cérebro humano se reconecta após uma lesão. Primeiro, o modelo analisa a tarefa recebida para entender seus requisitos antes de tentar aprender; então, se ajusta dinamicamente e fornece resultados personalizados para essa tarefa.

Este é um conteúdo exclusivo para assinantes.

Cadastre-se grátis para ler agora
e acesse 5 conteúdos por mês.

É assinante ou já tem senha? Faça login. Já recebe a newsletter? Ative seu acesso.

Apple e Google: o acordo que redesenha a IA de consumo

Inteligência Artificial

Apple e Google: o acordo que redesenha a IA de consumo

Mais do que acelerar a Siri, a parceria reorganiza poder quando a IA deixa de ser recurso e vira infraestrutura.

Quando vender virou uma questão de “vibe”

Inteligência Artificial

Quando vender virou uma questão de “vibe”

Ou como a Vibe Selling saiu do discurso motivacional e começou a se transformar em infraestrutura de IA para vendas

Human-in-the-Loop: de gargalo operacional a capacidade estratégica

Inteligência Artificial

Human-in-the-Loop: de gargalo operacional a capacidade estratégica

Empresas que usam o humano para guiar decisões sob incerteza constroem agentes mais confiáveis, governáveis e difíceis de copiar.

Engenharia e P&D sob pressão: custos sobem, decisões atrasam

Inteligência Artificial

Engenharia e P&D sob pressão: custos sobem, decisões atrasam

Relatório global da Capgemini mostra por que tecnologia não é mais o gargalo — e como a lentidão organizacional ameaça a competitividade.

A IA já funciona. Mas tem um problema estrutural

Inteligência Artificial

A IA já funciona. Mas tem um problema estrutural

A tecnologia amadureceu. Porém, organizações, processos e governança não acompanharam a velocidade da IA em escala.

Um tutor digital para cada pessoa

Inteligência Artificial

Um tutor digital para cada pessoa

A equação "IA + supervisão humana" redefine aprendizagem, reduz desigualdades e cria novo padrão de qualificação. A IA vira infraestrutura cognitiva, reconfigurando talento, ensino e competitividade.