s
INTELIGÊNCIA ARTIFICIAL

O futuro dos Transformers na IA e sua evolução

Estudos mostram que memória de longo prazo para Transformers permite lidar com contextos mais longos

Dois artigos de pesquisa recém-publicados podem significar muito para a arquitetura central dos Transformers, de modo a garantir a eles uma memória de longo prazo, torná-los melhores em lidar com contextos mais longos e se tornarem mais eficientes. Você confiaria mais na IA se os LLMs se lembrassem de conversas anteriores, aprendessem com elas e citassem as fontes? Pois é.

A proposta de pesquisadores da Sakana AI e do Institute of Science Tokyo é o Transformer², um framework de autoadaptação projetado para melhorar o desempenho dos LLMs, abrindo caminho para sistemas de IA dinâmicos e auto-organizados. Diferentemente dos sistemas de IA tradicionais que são pré-treinados para tarefas específicas, o Transformer² ajusta dinamicamente suas configurações internas para lidar com diversos desafios, que vão desde

  • Matemática: resolver problemas complexos com precisão.
  • Codificação: auxiliar desenvolvedores com geração e depuração de código.
  • Raciocínio: enfrentar desafios lógicos com proficiência semelhante à humana.
  • Compreensão visual: analisar imagens e padrões complexos de forma efetiva.

Modelos autoadaptativos visam solucionar os desafios apresentados pelos métodos tradicionais de ajuste fino, que geralmente são computacionalmente intensivos e estáticos em sua capacidade de lidar com diversas tarefas. Para desenvolver o Transformers², a equipe de IA da Sakana se inspirou em como o cérebro humano se reconecta após uma lesão. Primeiro, o modelo analisa a tarefa recebida para entender seus requisitos antes de tentar aprender; então, se ajusta dinamicamente e fornece resultados personalizados para essa tarefa.

Este é um conteúdo exclusivo para assinantes.

Cadastre-se grátis para ler agora
e acesse 5 conteúdos por mês.

É assinante ou já tem senha? Faça login. Já recebe a newsletter? Ative seu acesso.

Engenharia e P&D sob pressão: custos sobem, decisões atrasam

Inteligência Artificial

Engenharia e P&D sob pressão: custos sobem, decisões atrasam

Relatório global da Capgemini mostra por que tecnologia não é mais o gargalo — e como a lentidão organizacional ameaça a competitividade.

A IA já funciona. Mas tem um problema estrutural

Inteligência Artificial

A IA já funciona. Mas tem um problema estrutural

A tecnologia amadureceu. Porém, organizações, processos e governança não acompanharam a velocidade da IA em escala.

Um tutor digital para cada pessoa

Inteligência Artificial

Um tutor digital para cada pessoa

A equação "IA + supervisão humana" redefine aprendizagem, reduz desigualdades e cria novo padrão de qualificação. A IA vira infraestrutura cognitiva, reconfigurando talento, ensino e competitividade.

Modelos demais, valor de menos

Inteligência Artificial

Modelos demais, valor de menos

Em 2026, o maior risco de IA pode ser o excesso de modelos e a ausência de integração. O contexto se perde. E o ROI também.

A monetização via anúncios chegou às buscas de IA

Inteligência Artificial

A monetização via anúncios chegou às buscas de IA

O desafio agora é manter neutralidade e valor estratégico em um ambiente que tende à manipulação invisível.

A corrida da IA é vencida (ou perdida) na camada de dados

Inteligência Artificial

A corrida da IA é vencida (ou perdida) na camada de dados

Relatórios da IBM e da Deloitte apontam na mesma direção: empresas só extraem valor de IA quando CDOs garantem governança, integração e métricas consistentes para os dados.