s
INTELIGÊNCIA ARTIFICIAL

LLMs autoevolutivos avançam

E se os grandes modelos de linguagem pudessem aprender com as próprias experiências, sem intervenção humana? Essa é uma área de pesquisa promissora, mas há obstáculos a superar.

Nos últimos dois anos, os grandes modelos de linguagem (LLMs) evoluíram de forma extraordinária, muito graças ao acesso a grandes conjuntos de dados e à orientação humana. Ainda assim, costumam enfrentar limites de desempenho à medida que a complexidade e a diversidade das tarefas que executam aumentam. Para resolver essa questão, as pesquisas focam hoje no desenvolvimento dos Self-Evolving Language Models ( LLMs autoevolutivos).

A autoevolução permite que os LLMs adquiram, refinem e aprendam com suas próprias experiências, de forma autônoma, sem supervisão humana. Esse novo paradigma de treinamento — inspirado no aprendizado por tentativa e erro — oferece a possibilidade de dimensionar os LLMs em direção à superinteligência.

A tese é a de que, ao aprender com suas próprias experiências, um LLM pode otimizar seu processo de aprendizagem, reduzindo a necessidade de anotação e supervisão humana extensiva, levando ao treinamento e implantação mais eficientes. E também à escalabilidade e à capacidade de lidar com tarefas sofisticadas.

Este é um conteúdo exclusivo para assinantes.

Cadastre-se grátis para ler agora
e acesse 5 conteúdos por mês.

É assinante ou já tem senha? Faça login. Já recebe a newsletter? Ative seu acesso.

IA Física: a nova fronteira da automação inteligente

Inteligência Artificial

IA Física: a nova fronteira da automação inteligente

De humanoides a veículos autônomos, a robótica entra em fase de maturação com dados sintéticos, teleoperação e modelos generativos que aprendem a agir no mundo real.

Superinteligência sim, com regras diferentes

Inteligência Artificial

Superinteligência sim, com regras diferentes

Enquanto o Vale do Silício corre para criar máquinas que superem a mente humana, a Microsoft aposta em outro tipo de corrida: a por uma superinteligência poderosa, mas sob controle humano.

O novo tabuleiro da IA corporativa

Inteligência Artificial

O novo tabuleiro da IA corporativa

IA Soberana sai dos gabinetes de governo e entra no coração da estratégia corporativa, redefinindo quem controla dados, energia e vantagem competitiva.

Agentes de IA e o novo ciclo da decisão corporativa

Inteligência Artificial

Agentes de IA e o novo ciclo da decisão corporativa

Simulações baseadas em agentes autônomos estão acelerando decisões de negócios — e já superam pesquisas tradicionais em precisão e tempo. Mas há desafios para o uso em escala.

Rotulagem de dados: o “combustível cognitivo” da IA corporativa

Inteligência Artificial

Rotulagem de dados: o “combustível cognitivo” da IA corporativa

Empresas que tratam rotulagem como capex cognitivo, e não custo operacional, estão melhor preparadas para transformar aprendizado em ROI.

Vibe coding encontra a realidade corporativa

Inteligência Artificial

Vibe coding encontra a realidade corporativa

O pico de expectativas sobre vibe coding está cedendo lugar a um uso mais controlado. Em protótipos e automações locais, funciona. Em produção, sem governança, vira dívida técnica e risco.