s
INTELIGÊNCIA ARTIFICIAL

LLMs autoevolutivos avançam

E se os grandes modelos de linguagem pudessem aprender com as próprias experiências, sem intervenção humana? Essa é uma área de pesquisa promissora, mas há obstáculos a superar.

Nos últimos dois anos, os grandes modelos de linguagem (LLMs) evoluíram de forma extraordinária, muito graças ao acesso a grandes conjuntos de dados e à orientação humana. Ainda assim, costumam enfrentar limites de desempenho à medida que a complexidade e a diversidade das tarefas que executam aumentam. Para resolver essa questão, as pesquisas focam hoje no desenvolvimento dos Self-Evolving Language Models ( LLMs autoevolutivos).

A autoevolução permite que os LLMs adquiram, refinem e aprendam com suas próprias experiências, de forma autônoma, sem supervisão humana. Esse novo paradigma de treinamento — inspirado no aprendizado por tentativa e erro — oferece a possibilidade de dimensionar os LLMs em direção à superinteligência.

A tese é a de que, ao aprender com suas próprias experiências, um LLM pode otimizar seu processo de aprendizagem, reduzindo a necessidade de anotação e supervisão humana extensiva, levando ao treinamento e implantação mais eficientes. E também à escalabilidade e à capacidade de lidar com tarefas sofisticadas.

Este é um conteúdo exclusivo para assinantes.

Cadastre-se grátis para ler agora
e acesse 5 conteúdos por mês.

É assinante ou já tem senha? Faça login. Já recebe a newsletter? Ative seu acesso.

Engenharia e P&D sob pressão: custos sobem, decisões atrasam

Inteligência Artificial

Engenharia e P&D sob pressão: custos sobem, decisões atrasam

Relatório global da Capgemini mostra por que tecnologia não é mais o gargalo — e como a lentidão organizacional ameaça a competitividade.

A IA já funciona. Mas tem um problema estrutural

Inteligência Artificial

A IA já funciona. Mas tem um problema estrutural

A tecnologia amadureceu. Porém, organizações, processos e governança não acompanharam a velocidade da IA em escala.

Um tutor digital para cada pessoa

Inteligência Artificial

Um tutor digital para cada pessoa

A equação "IA + supervisão humana" redefine aprendizagem, reduz desigualdades e cria novo padrão de qualificação. A IA vira infraestrutura cognitiva, reconfigurando talento, ensino e competitividade.

Modelos demais, valor de menos

Inteligência Artificial

Modelos demais, valor de menos

Em 2026, o maior risco de IA pode ser o excesso de modelos e a ausência de integração. O contexto se perde. E o ROI também.

A monetização via anúncios chegou às buscas de IA

Inteligência Artificial

A monetização via anúncios chegou às buscas de IA

O desafio agora é manter neutralidade e valor estratégico em um ambiente que tende à manipulação invisível.

A corrida da IA é vencida (ou perdida) na camada de dados

Inteligência Artificial

A corrida da IA é vencida (ou perdida) na camada de dados

Relatórios da IBM e da Deloitte apontam na mesma direção: empresas só extraem valor de IA quando CDOs garantem governança, integração e métricas consistentes para os dados.