s
Crédito Canva
INTELIGÊNCIA ARTIFICIAL

Como escolher o projeto de IA Generativa adequado

Um dos caminhos é usar métodos que ajudem a identificar os casos de uso com menor risco e maior valor para a empresa, considerando a demanda

Nos últimos dias, temos ouvido exageros e especulações sobre as implicações de grandes modelos de linguagem (LLMs) como o ChatGPT e o GPT4, da OpenAI, o Bard, do Google, o Claude, da Anthropic e o LLaMA, da Meta. O ChatGPT, em particular, atingiu 100 milhões de usuários em dois meses, tornando-se o aplicativo de consumo de mais rápido crescimento e todos os tempos.

Muitos especialistas argumentam que os LLMs terão pouco impacto (pesquisas acadêmicas iniciais sugerem que a capacidade dos LLMs é restrita à competência linguística formal) ou que mesmo um volume quase infinito de dados de treinamento baseados em texto ainda é severamente limitante. Outros, como Ethan Mollick, argumentam o oposto: “As empresas que entenderem o significado dessa mudança — e agirem primeiro — terão uma vantagem considerável”.

Apesar das questões em aberto sobre essa nova tecnologia, as empresas estão buscando maneiras de aplicá-la — agora. Existe uma maneira de afastar os exageros e hipérboles e pensar claramente sobre onde a tecnologia atingirá o alvo primeiro? Como identificar os casos de uso mais valiosos — e menos arriscados — para sua empresa? É o que essa matriz 2 × 2, elaborada por Marc Zao-Sanders, CEO e co-fundador da Filtered e Marc Ramos, diretor de Aprendizagem da Cornerstone, propõe ajudar a responder.

Este é um conteúdo exclusivo para assinantes.

Cadastre-se grátis para ler agora
e acesse 5 conteúdos por mês.

É assinante ou já tem senha? Faça login. Já recebe a newsletter? Ative seu acesso.

Engenharia e P&D sob pressão: custos sobem, decisões atrasam

Inteligência Artificial

Engenharia e P&D sob pressão: custos sobem, decisões atrasam

Relatório global da Capgemini mostra por que tecnologia não é mais o gargalo — e como a lentidão organizacional ameaça a competitividade.

A IA já funciona. Mas tem um problema estrutural

Inteligência Artificial

A IA já funciona. Mas tem um problema estrutural

A tecnologia amadureceu, mas organizações, processos e governança não acompanharam a velocidade da IA em escala.

Um tutor digital para cada pessoa

Inteligência Artificial

Um tutor digital para cada pessoa

A equação "IA + supervisão humana" redefine aprendizagem, reduz desigualdades e cria novo padrão de qualificação. A IA vira infraestrutura cognitiva, reconfigurando talento, ensino e competitividade.

Modelos demais, valor de menos

Inteligência Artificial

Modelos demais, valor de menos

Em 2026, o maior risco de IA pode ser o excesso de modelos e a ausência de integração. O contexto se perde. E o ROI também.

A monetização via anúncios chegou às buscas de IA

Inteligência Artificial

A monetização via anúncios chegou às buscas de IA

O desafio agora é manter neutralidade e valor estratégico em um ambiente que tende à manipulação invisível.

A corrida da IA é vencida (ou perdida) na camada de dados

Inteligência Artificial

A corrida da IA é vencida (ou perdida) na camada de dados

Relatórios da IBM e da Deloitte apontam na mesma direção: empresas só extraem valor de IA quando CDOs garantem governança, integração e métricas consistentes para os dados.