s
INTELIGÊNCIA ARTIFICIAL

A quantidade de parâmetros pode deixar de ser referência para os LLMs

Segundo Sam Altman, CEO da OpenAI, estamos no fim da era dos modelos gigantescos. A indústria vai torná-los melhores de outras maneiras

Modelos de linguagem cada vez maiores não são o futuro. Pelo menos não na visão do CEO da OpenAI, Sam Altman. “Acho que estamos no fim da era desses modelos gigantes, e vamos torná-los melhores de outras maneiras”, disse ele na semana passada, durante um evento do MIT. "É melhor focar em aumentar rapidamente a capacidade, em vez de na contagem de parâmetros", explicou.

Altman já havia dito algo parecido durante sua conversa com Lex Fridman, publicada aqui semanas atrás. A ideia é obter melhorias de capacidade com contagens de parâmetros mais baixas ou aproveitando vários modelos menores juntos. O que sugere que o GPT-4 pode ser o último avanço da IA fruto da estratégia de tornar os modelos maiores e alimentá-los com mais dados. Infelizmente, Altman não detalhou as estratégias ou técnicas de pesquisa que poderiam substituí-la. "Existem muitas maneiras de tornar os modelos Transformers melhores e mais úteis, e muitas delas não envolvem a adição de parâmetros ao modelo", concorda Nick Frostst, da Cohere.

A questão é quanto progresso virá de novos designs de modelos, arquiteturas, aprimoramento da eficiência de dados, avanço de técnicas algorítmicas ou ajuste adicional, propostos por muitos. Técnicas como as dos modelos ajustados para tarefas específicas provavelmente trarão progresso, mas talvez nada parecido com o que vimos nos últimos anos. A esperança é que mantenham o ritmo, reduzindo o custo de desenvolvimento.

Este é um conteúdo exclusivo para assinantes.

Cadastre-se grátis para ler agora
e acesse 5 conteúdos por mês.

É assinante ou já tem senha? Faça login. Já recebe a newsletter? Ative seu acesso.

Inteligência barata, infraestrutura cara

Inteligência Artificial

Inteligência barata, infraestrutura cara

A queda no preço por token amplia demanda e pressiona ROI, enquanto US$ 1,3 trilhão em CapEX redesenha a indústria até 2027.

SaaS, agentes e a nova economia do software

Inteligência Artificial

SaaS, agentes e a nova economia do software

A automação por IA está deslocando valor da interface para dados, controle e orquestração.

IA Agêntica depende mais de gente que de código

Inteligência Artificial

IA Agêntica depende mais de gente que de código

Agentes prometem escala e eficiência, mas expõem limites organizacionais. O diferencial está na capacidade das empresas de gerir IA como rotina operacional.

Quem define as regras quando agentes se coordenam?

Inteligência Artificial

Quem define as regras quando agentes se coordenam?

O que o experimento MoltBook revela sobre o valor econômico, a governança e a liderança em sistemas autônomos.

Capital cerebral: o limite invisível do crescimento na era da IA

Inteligência Artificial

Capital cerebral: o limite invisível do crescimento na era da IA

A economia avança com IA, mas esbarra na qualidade do julgamento humano — um fator ainda ausente das métricas e da governança corporativa.

A IA entrou no orçamento. Falta entrar no modelo de negócio


Inteligência Artificial

A IA entrou no orçamento. Falta entrar no modelo de negócio


Pesquisas da PwC e do MIT mostram por que os investimentos em IA avançam mais rápido do que a capacidade das empresas de capturar valor. E por que o problema não é tecnológico, mas estrutural.