s
INTELIGÊNCIA ARTIFICIAL

Qual o futuro dos chatbots de IA?

E por que aqueles alimentados por grandes modelos de linguagem, apesar de mais capazes, ainda levarão algum tempo para chegar aos aplicativos comerciais?

A indústria de IA conversacional explodiu e teve um crescimento imenso na última década. Só o mercado de chatbots de IA, que utilizam Processamento de Linguagem Natural (NLP) e Machine Learning (ML) para funcionar,  chegará a 454,8 milhões de dólares em 2027, segundo o Statista. O que parecia apenas uma ferramenta de atendimento ao cliente, hoje está agregando valor aos processos de negócios, sendo usados pelas marcas para construir um sólido pipeline de vendas, atingir objetivos de marketing, habilitar o comércio, impulsionar o engajamento, induzir a fidelidade à marca, e por aí vai. Setores como comércio eletrônico, varejo, saúde, finanças, imóveis, educação e viagens têm estado na vanguarda do uso. Mas…

Desde os recentes episódios com o LaMDA, do Google, e o BlenderBot 3, da Meta, que os pesquisadores e desenvolvedores têm se perguntado sobre a viabilidade da próxima geração de chatbots, alimentada pelos grandes modelos de linguagem. Torná-los poderosos o suficiente para serem úteis, evitando respostas prejudiciais, é uma tarefa que vem se demonstrando nada trivial, assim como não é trivial a ideia de fazer com que o chatbot melhore a cada chat e se adapte ao que os clientes dizem e fazem.

Modelos como o GPT-3 ensinam que, em uma conversa, tentam dar a resposta mais provável, conforme o contexto e todas as conversas que tiveram acesso em seu treinamento. Na prática, o chatbot nem sempre dará as mesmas respostas para as mesmas perguntas.

Este é um conteúdo exclusivo para assinantes.

Cadastre-se grátis para ler agora
e acesse 5 conteúdos por mês.

É assinante ou já tem senha? Faça login. Já recebe a newsletter? Ative seu acesso.

A tecnologia acelerou, mas a base científica e humana está encolhendo

Inovação

A tecnologia acelerou, mas a base científica e humana está encolhend...

Enquanto IA, quântica e biotecnologia avançam, Stanford alerta para a erosão da ciência básica e do capital humano

SaaS, agentes e a nova economia do software

Inteligência Artificial

SaaS, agentes e a nova economia do software

A automação por IA está deslocando valor da interface para dados, controle e orquestração.

Mais cobrança por resultados, menos preparo: a equação de risco das empresas em 2026

Tendências

Mais cobrança por resultados, menos preparo: a equação de risco das...

Estudos do GPTW, da Gartner e da Harvard Business Review indicam que exigir performance sem recalibrar suporte, cultura e capacitação cobra um preço alto

A crise silenciosa do trabalho: por que as empresas estão perdendo foco, não horas

Tendências

A crise silenciosa do trabalho: por que as empresas estão perdendo fo...

Dados globais indicam que apenas 2 a 3 horas do dia são realmente produtivas, enquanto o “trabalho sobre trabalho” e a fragmentação da agenda corroem a eficiência

IA Agêntica depende mais de gente que de código

Inteligência Artificial

IA Agêntica depende mais de gente que de código

Agentes prometem escala e eficiência, mas expõem limites organizacionais. O diferencial está na capacidade das empresas de gerir IA como rotina operacional.

Quem define as regras quando agentes se coordenam?

Inteligência Artificial

Quem define as regras quando agentes se coordenam?

O que o experimento MoltBook revela sobre o valor econômico, a governança e a liderança em sistemas autônomos.