A indústria de IA conversacional explodiu e teve um crescimento imenso na última década. Só o mercado de chatbots de IA, que utilizam Processamento de Linguagem Natural (NLP) e Machine Learning (ML) para funcionar, chegará a 454,8 milhões de dólares em 2027, segundo o Statista. O que parecia apenas uma ferramenta de atendimento ao cliente, hoje está agregando valor aos processos de negócios, sendo usados pelas marcas para construir um sólido pipeline de vendas, atingir objetivos de marketing, habilitar o comércio, impulsionar o engajamento, induzir a fidelidade à marca, e por aí vai. Setores como comércio eletrônico, varejo, saúde, finanças, imóveis, educação e viagens têm estado na vanguarda do uso. Mas…
Desde os recentes episódios com o LaMDA, do Google, e o BlenderBot 3, da Meta, que os pesquisadores e desenvolvedores têm se perguntado sobre a viabilidade da próxima geração de chatbots, alimentada pelos grandes modelos de linguagem. Torná-los poderosos o suficiente para serem úteis, evitando respostas prejudiciais, é uma tarefa que vem se demonstrando nada trivial, assim como não é trivial a ideia de fazer com que o chatbot melhore a cada chat e se adapte ao que os clientes dizem e fazem.
Modelos como o GPT-3 ensinam que, em uma conversa, tentam dar a resposta mais provável, conforme o contexto e todas as conversas que tiveram acesso em seu treinamento. Na prática, o chatbot nem sempre dará as mesmas respostas para as mesmas perguntas.
Este é um conteúdo exclusivo para assinantes.
Cadastre-se grátis para ler agora
e acesse 5 conteúdos por mês.
É assinante ou já tem senha? Faça login. Já recebe a newsletter? Ative seu acesso.
Enquanto IA, quântica e biotecnologia avançam, Stanford alerta para a erosão da ciência básica e do capital humano
A automação por IA está deslocando valor da interface para dados, controle e orquestração.
Estudos do GPTW, da Gartner e da Harvard Business Review indicam que exigir performance sem recalibrar suporte, cultura e capacitação cobra um preço alto
Dados globais indicam que apenas 2 a 3 horas do dia são realmente produtivas, enquanto o “trabalho sobre trabalho” e a fragmentação da agenda corroem a eficiência
Agentes prometem escala e eficiência, mas expõem limites organizacionais. O diferencial está na capacidade das empresas de gerir IA como rotina operacional.
O que o experimento MoltBook revela sobre o valor econômico, a governança e a liderança em sistemas autônomos.
Aproveite nossas promoções de renovação
Clique aquiPara continuar navegando como visitante, vá por aqui.
Cadastre-se grátis, leia até 5 conteúdos por mês,
e receba nossa newsletter diária.
Já recebe a newsletter? Ative seu acesso
