s
INTELIGÊNCIA ARTIFICIAL

IA Neurosimbólica: uma virada estratégica

A promessa é aumentar transparência, explicabilidade e eficiência, reduzir custos e criar fluxos inteligentes em escala.

Nos últimos anos, os grandes modelos de linguagem (LLMs) mudaram a IA. Mas já mostram limites claros: custo bilionário, consumo energético descomunal, falhas lógicas e alucinações. Aumentar escala não resolve esses desafios. Cresce então a aposta em uma abordagem híbrida: a Inteligência Artificial Neurosimbólica (IANS), que combina redes neurais (que aprendem com dados) com sistemas simbólicos (que usam regras e lógica). Essa fusão gera modelos mais explicáveis, confiáveis e eficientes, essenciais para setores regulados como saúde, finanças e direito.

Como funciona?

A literatura destaca dois caminhos principais para a combinação neurosimbólica:

  • Injetar conhecimento simbólico em redes neurais → regras e ontologias são embutidas nos modelos, reduzindo a dependência de grandes volumes de dados e trazendo restrições de domínio já no treinamento.
  • Extrair raciocínio simbólico de redes neurais → traduzir as saídas dos modelos em cadeias lógicas compreensíveis, permitindo auditoria e integração com solucionadores simbólicos. Esse segundo caminho é visto como o mais promissor, por preservar a força perceptiva das redes neurais e acrescenta explicabilidade.

O caso do AlphaGeometry, da DeepMind, é emblemático: ao combinar reconhecimento neural com lógica formal, o sistema resolveu 25 de 30 problemas da Olimpíada Internacional de Matemática — muito além do desempenho de modelos puramente conexionistas.

Para explicar essas tecnologias da forma mais simples possível, a IA neural (frequentemente chamada de tecnologia de redes neurais) aplica o reconhecimento de padrões em grandes conjuntos de dados com base nas complexas capacidades de raciocínio do próprio cérebro. Assim, a IA neural é ótima para elaborar a logística de transporte de cidades inteligentes com base em um conjunto acumulado de informações de sensores, mas não é tão eficaz para prever quando o próximo fenômeno da música pop surgirá.

Este é um conteúdo exclusivo para assinantes.

Cadastre-se grátis para ler agora
e acesse 5 conteúdos por mês.

É assinante ou já tem senha? Faça login. Já recebe a newsletter? Ative seu acesso.

O novo playbook do software

Inteligência Artificial

O novo playbook do software

A IA está mudando o mercado de software. Empresas nativas de IA crescem até três vezes mais rápido que as de SaaS tradicional, com um diferencial: retorno rápido de valor para o cliente.

Os agentes de IA avançam. As empresas, nem tanto

Inteligência Artificial

Os agentes de IA avançam. As empresas, nem tanto

Muitas organizações têm dificuldade em transformar a IA Agêntica em ROI. Desafios estruturais como governança, déficit técnico, custo e confiança ainda limitam o impacto desejado

IA no trabalho: entre dopamina, workslop e risco regulatório

Inteligência Artificial

IA no trabalho: entre dopamina, workslop e risco regulatório

Pesquisas recentes mostram que chatbots e copilots podem capturar atenção como redes sociais e máquinas caça-níqueis. E já há um preço alto sendo pago nas empresas.

Como aumentar a segurança da GenAI?

Inteligência Artificial

Como aumentar a segurança da GenAI?

Tratando segurança como arquitetura e não como filtro no fim do funil. Aplicações que nascem com detecção, supervisão e resposta em camadas independentes escalam com menos sustos.

Otimismo e medo: como os brasileiros veem a IA no trabalho

Inteligência Artificial

Otimismo e medo: como os brasileiros veem a IA no trabalho

Pesquisa mostra que 85% dos trabalhadores acham que a IA vai impactar seus empregos. O Brasil é o mais otimista da América Latina, mas também sente medo de ser substituído

IA boa é IA governada

Inteligência Artificial

IA boa é IA governada

Sem fundação sólida, projetos viram castelos de areia: executivos da MATH explicam como transformar hype em vantagem competitiva com governança, resiliência e ROI real.