A Inteligência Artificial (IA) permanece como um dos fatores a pesar nas decisões de diretores de empresas, quando se pensa em infraestrutura. A tendência apontada pelo relatório do Gartner indica que esse movimento deve se manter forte até 2023.
Os modelos de IA terão de passar periodicamente por um refinamento por parte da equipe de TI para garantir taxas de sucesso, o que pode incluir padronização de pipelines de informação ou integração de modelos de machine learning com streaming de fontes diferentes de informação para entregar as previsões em tempo real.
IA Soberana sai dos gabinetes de governo e entra no coração da estratégia corporativa, redefinindo quem controla dados, energia e vantagem competitiva.
Simulações baseadas em agentes autônomos estão acelerando decisões de negócios — e já superam pesquisas tradicionais em precisão e tempo. Mas há desafios para o uso em escala.
Empresas que tratam rotulagem como capex cognitivo, e não custo operacional, estão melhor preparadas para transformar aprendizado em ROI.
O pico de expectativas sobre vibe coding está cedendo lugar a um uso mais controlado. Em protótipos e automações locais, funciona. Em produção, sem governança, vira dívida técnica e risco.
Cisco mede a prontidão, IBM mede a transformação — juntas, expõem o ponto cego da maturidade em IA. Charlene Li mostra o caminho para atingi-la.
Segundo a McKinsey, liderar na era da IA Agêntica exige CEOs fluentes em tecnologia, capazes de equilibrar velocidade, confiança e responsabilidade em um modelo híbrido entre humanos e agentes inteligentes
Aproveite nossas promoções de renovação
Clique aquiPara continuar navegando como visitante, vá por aqui.
Cadastre-se grátis, leia até 5 conteúdos por mês,
e receba nossa newsletter diária.
Já recebe a newsletter? Ative seu acesso
