Nos últimos anos, os grandes modelos de linguagem (LLMs) mudaram a IA. Mas já mostram limites claros: custo bilionário, consumo energético descomunal, falhas lógicas e alucinações. Aumentar escala não resolve esses desafios. Cresce então a aposta em uma abordagem híbrida: a Inteligência Artificial Neurosimbólica (IANS), que combina redes neurais (que aprendem com dados) com sistemas simbólicos (que usam regras e lógica). Essa fusão gera modelos mais explicáveis, confiáveis e eficientes, essenciais para setores regulados como saúde, finanças e direito.
A literatura destaca dois caminhos principais para a combinação neurosimbólica:
O caso do AlphaGeometry, da DeepMind, é emblemático: ao combinar reconhecimento neural com lógica formal, o sistema resolveu 25 de 30 problemas da Olimpíada Internacional de Matemática — muito além do desempenho de modelos puramente conexionistas.
Para explicar essas tecnologias da forma mais simples possível, a IA neural (frequentemente chamada de tecnologia de redes neurais) aplica o reconhecimento de padrões em grandes conjuntos de dados com base nas complexas capacidades de raciocínio do próprio cérebro. Assim, a IA neural é ótima para elaborar a logística de transporte de cidades inteligentes com base em um conjunto acumulado de informações de sensores, mas não é tão eficaz para prever quando o próximo fenômeno da música pop surgirá.
Este é um conteúdo exclusivo para assinantes.
Cadastre-se grátis para ler agora
e acesse 5 conteúdos por mês.
É assinante ou já tem senha? Faça login. Já recebe a newsletter? Ative seu acesso.
Com 73% das empresas operando programas estruturados e 91% priorizando IA e dados, o país supera o ciclo experimental e transforma colaboração com startups em estratégia central de negócios
Como sair do 'purgatório' da experimentação para resultados reais
São rupturas estruturais que exigem mais das organizações do que a mera adoção de uma nova tecnologia, aponta o novo relatório do MIT em parceria com o BCG.
A verdadeira ameaça à força de trabalho não é a automação, mas a falta de direção das lideranças
Estudo da Accel projeta US$ 4,1 trilhões em investimentos em data centers, crescimento acelerado de aplicações e novos limites energéticos.
De humanoides a veículos autônomos, a robótica entra em fase de maturação com dados sintéticos, teleoperação e modelos generativos que aprendem a agir no mundo real.
Aproveite nossas promoções de renovação
Clique aquiPara continuar navegando como visitante, vá por aqui.
Cadastre-se grátis, leia até 5 conteúdos por mês,
e receba nossa newsletter diária.
Já recebe a newsletter? Ative seu acesso
