s
INTELIGÊNCIA ARTIFICIAL

Em busca da IA prática

A indústria de IA trabalha em modelos cada vez maiores, mas enfrenta questões sobre custos, eficiência e propósito. Para que continuar criando modelos gigantescos? Não seria o caso mudar o foco para modelos menores e mais úteis?

Para onde a fixação da indústria de IA em modelos cada vez maiores nos levará? O que realmente pretendemos alcançar ao injetar trilhões de dólares em IA, particularmente grandes modelos de linguagens (LLMs) e modelos de fundação multimodais? Estamos perseguindo cegamente modelos maiores e mais dados, mesmo quando a própria internet pode não fornecer matéria-prima suficiente para uma expansão significativa? Quão mais capazes serão o GPT-5 ou 6? Poderão ser melhores em responder perguntas? O que estamos construindo no final do dia? Até o próprio Sam Altman, em uma entrevista recente, revelou que quando começou a OpenAI, acreditava que a IA assumiria o trabalho pesado. Mas o que realmente estamos automatizando?

Os players maiores estão abordando necessidades genuínas ou estão presos em um loop de criação de sistemas cada vez mais complexos sem um propósito claro? À medida que a corrida armamentista da IA se intensifica, o mesmo acontece com o debate sobre despesas de capital. David Cahn, da Sequoia, argumentou recentemente que o debate atual não é apenas sobre se o CapEx da IA é muito alto, mas se a velocidade e a necessidade de construção da infraestrutura são justificadas.

A competição entre os principais provedores de nuvem, como Microsoft, Amazon e Google, está levando a uma rápida expansão, mas a que custo? Os players menores estão sendo espremidos, e os investimentos de hoje podem se tornar obsoletos se o progresso da IA ultrapassar a infraestrutura física que está sendo construída, alertam os analistas. The Information relata que duas empresas estão planejando data centers de IA de US$ 125 bilhões. Elon Musk anunciou que a xAI construiu um cluster de 100 mil unidades de processamento gráfico H100 — supostamente para ser dobrado em meses a um custo entre US$ 10 bilhões e US$ 15 bilhões. Isso supera o cluster de treinamento do GPT-4 em 30 vezes!!!

Este é um conteúdo exclusivo para assinantes.

Cadastre-se grátis para ler agora
e acesse 5 conteúdos por mês.

É assinante ou já tem senha? Faça login. Já recebe a newsletter? Ative seu acesso.

O novo playbook do software

Inteligência Artificial

O novo playbook do software

A IA está mudando o mercado de software. Empresas nativas de IA crescem até três vezes mais rápido que as de SaaS tradicional, com um diferencial: retorno rápido de valor para o cliente.

Os agentes de IA avançam. As empresas, nem tanto

Inteligência Artificial

Os agentes de IA avançam. As empresas, nem tanto

Muitas organizações têm dificuldade em transformar a IA Agêntica em ROI. Desafios estruturais como governança, déficit técnico, custo e confiança ainda limitam o impacto desejado

IA no trabalho: entre dopamina, workslop e risco regulatório

Inteligência Artificial

IA no trabalho: entre dopamina, workslop e risco regulatório

Pesquisas recentes mostram que chatbots e copilots podem capturar atenção como redes sociais e máquinas caça-níqueis. E já há um preço alto sendo pago nas empresas.

Como aumentar a segurança da GenAI?

Inteligência Artificial

Como aumentar a segurança da GenAI?

Tratando segurança como arquitetura e não como filtro no fim do funil. Aplicações que nascem com detecção, supervisão e resposta em camadas independentes escalam com menos sustos.

Otimismo e medo: como os brasileiros veem a IA no trabalho

Inteligência Artificial

Otimismo e medo: como os brasileiros veem a IA no trabalho

Pesquisa mostra que 85% dos trabalhadores acham que a IA vai impactar seus empregos. O Brasil é o mais otimista da América Latina, mas também sente medo de ser substituído

IA boa é IA governada

Inteligência Artificial

IA boa é IA governada

Sem fundação sólida, projetos viram castelos de areia: executivos da MATH explicam como transformar hype em vantagem competitiva com governança, resiliência e ROI real.